63 research outputs found

    P90Necrotic cardiomyocytes release soluble pro-inflammatory molecule(s) inducing il1r/myd88-dependent inflammatory responses in cardiac fibroblasts

    Get PDF
    Background: Inflammation comes out to be a critical biological process in the pathophysiology of myocardial infarction (MI). We hypothesize that this inflammation is triggered by necrotic cardiomyocytes (Cmc) that release a set of endogenous molecules (DAMPs: danger-associated molecular patterns) activating inflammatory responses in cardiac fibroblasts. Aim: Analyze in vitro the immune activation of cardiac fibroblasts exposed to necrotic Cmc conditioned media. Methods: Primary neonatal murine cardiac fibroblasts and Cmc were obtained by digestion of neonatal hearts and differential plating technique allowing a selection for cardiomyocytes and cardiac fibroblasts. Cmc were killed by necrotic stimuli including oxidants (hydrogen peroxide) and mechanic stresses (freeze-thaw). Necrosis was assessed using Hoechst/PI stainings. Fibroblasts were exposed to necrotic Cmc conditioned media and mRNA expression of inflammatory genes was measured by real-time PCR and ELISA. Activation of signaling pathways was analyzed by western blot. We used cardiac cells from Myd88-/-, Trif-/- and Nlrp3-/- animals to evaluate the contribution of TLRs/IL1-R and NLRP3 inflammasome in the sensing of necrotic DAMPs. Results: mRNA expression of chemokines such as MCP-1, MIP-2 and IP-10 were induced in fibroblasts exposed to necrotic Cmc conditioned media. Alternatively, fibroblasts exposed to necrotic fibroblasts conditioned media showed a lower increase in mRNA expression of these chemokines. In addition, in fibroblasts from Myd88-/- mice, response to Cmc conditioned media was fully abrogated whereas no difference was observed in Trif-/- and Nlrp3-/- fibroblasts. Conclusion: Cardiac fibroblasts are able to produce a rapid and specific inflammatory response to necrotic Cmc conditioned media involving the expression of neutrophil and monocyte chemoattractants. The dependence on MyD88 adaptor protein strongly suggests that this response relies on TLR/IL-1R signaling. These results engage cardiac fibroblasts as key players in post-MI inflammatory responses as they are able to sense DAMPs from necrotic Cmc and possibly recruit inflammatory cells. Research supported by the Swiss National Science Foundation, Grant n° 310030_135394/

    P619Role of Toll-like receptor 5 in the development of post-myocardial infarction inflammation

    Get PDF
    Background: Inflammatory processes play a key role in the pathophysiology of myocardial infarction (MI). Genetic deletion of toll-like recpetors (TLRs), especially TLR2 and TLR4 have shown protective role in murine models of MI. The role of other TLRs remains unknown. We have previously shown that cardiomyocytes express TLR5 and that the ligand of TLR5, flagellin, activates the NF-kappaB and MAPK pathways in cardiomyocytes. We also have shown that injection of flagellin induces acute systolic dysfunction in vivo in mice. Aim: Determine the role of TLR5 in the development of post-MI inflammation. Methods: A murine model of myocardial infarction was done by a 30 minutes ligation of the left anterior descending coronary artery followed by 2 hours of reperfusion. Infarct size was measured by standard Evans blue/TTC staining. Plasma creatine kinase (CK) was quantified as a read out of myocardial necrosis. Tissue and plasma cytokines (MIP-2, MCP-1, IL-6) were quantified by ELISA. To determine the extent of tissue lipid peroxidation we used malondialdehyde and 4-hydroxynonenal-HIS adduct assays. Tissue protein oxidation was tested by protein carbonyl ELISA kit. Phosphorylation of MAPK was analyzed by western blot. Results: Genetic suppression of TLR5 induced a significant increase of myocardial infarct size and plasma CK, of biochemical markers of myocardial oxidative stress, and cytokine levels in the heart and the plasma after MI. These effects were associated with a marked enhancement of p38 phosphorylation in the heart from TLR5 KO mice. Conclusion: TLR5 protects from acute myocardial injury and reduces local and systemic inflammation during myocardial infarction. The mechanisms may involve reduced p38 signaling, decreased oxidative stress and attenuated cytokine expression. Research supported by the Swiss National Science Foundation, Grant n° 310030_135394/

    Event-based causality in virtual reality

    Get PDF

    The systemic deletion of interleukin-1α reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction.

    Get PDF
    Myocardial inflammation following myocardial infarction (MI) is crucial for proper myocardial healing, yet, dysregulated inflammation may promote adverse ventricular remodeling and heart failure. IL-1 signaling contributes to these processes, as shown by dampened inflammation by inhibition of IL-1β or the IL-1 receptor. In contrast, the potential role of IL-1α in these mechanisms has received much less attention. Previously described as a myocardial-derived alarmin, IL-1α may also act as a systemically released inflammatory cytokine. We therefore investigated the effect of IL-1α deficiency on post-MI inflammation and ventricular remodeling in a murine model of permanent coronary occlusion. In the first week post-MI, global IL-1α deficiency (IL-1α KO mice) led to decreased myocardial expression of IL-6, MCP-1, VCAM-1, hypertrophic and pro-fibrotic genes, and reduced infiltration with inflammatory monocytes. These early changes were associated with an attenuation of delayed left ventricle (LV) remodeling and systolic dysfunction after extensive MI. In contrast to systemic Il1a-KO, conditional cardiomyocyte deletion of Il1a (CmIl1a-KO) did not reduce delayed LV remodeling and systolic dysfunction. In conclusion, systemic Il1a-KO, but not Cml1a-KO, protects against adverse cardiac remodeling after MI due to permanent coronary occlusion. Hence, anti-IL-1α therapies could be useful to attenuate the detrimental consequences of post-MI myocardial inflammation

    Playing in or out of character: User role differences in the experience of Interactive Storytelling

    Get PDF
    Interactive storytelling (IS) is a promising new entertainment technology synthesizing preauthored narrative with dynamic user interaction. Existing IS prototypes employ different modes to involve users in a story, ranging from individual avatar control to comprehensive control over the virtual environment. The current experiment tested whether different player modes (exerting local vs. global influence) yield different user experiences (e.g., senses of immersion vs. control). A within-subject design involved 34 participants playing the cinematic IS drama "Emo Emma

    The role of oxidative stress during inflammatory processes.

    Get PDF
    Abstract The production of various reactive oxidant species in excess of endogenous antioxidant defense mechanisms promotes the development of a state of oxidative stress, with significant biological consequences. In recent years, evidence has emerged that oxidative stress plays a crucial role in the development and perpetuation of inflammation, and thus contributes to the pathophysiology of a number of debilitating illnesses, such as cardiovascular diseases, diabetes, cancer, or neurodegenerative processes. Oxidants affect all stages of the inflammatory response, including the release by damaged tissues of molecules acting as endogenous danger signals, their sensing by innate immune receptors from the Toll-like (TLRs) and the NOD-like (NLRs) families, and the activation of signaling pathways initiating the adaptive cellular response to such signals. In this article, after summarizing the basic aspects of redox biology and inflammation, we review in detail the current knowledge on the fundamental connections between oxidative stress and inflammatory processes, with a special emphasis on the danger molecule high-mobility group box-1, the TLRs, the NLRP-3 receptor, and the inflammasome, as well as the transcription factor nuclear factor-κB

    Benchmark Framework for Virtual Students’ Behaviours

    Get PDF
    This paper demonstrates the integration and evaluation of different atmosphere models into Virtual Reality (VR) training for teacher education. We developed three behaviour models to simulate different levels of class discipline. We evaluated their performances using a combination of objective and subjective measurements. Our initial results suggest that the more believable and distinguishable classroom atmospheres are produced by creating more consistent behaviours across virtual students. Our results confirm the importance of similar behaviours to elicit a particular atmosphere

    Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction.

    Get PDF
    Myocardial infarction (MI) induces a sterile inflammatory response that contributes to adverse cardiac remodeling. The initiating mechanisms of this response remain incompletely defined. We found that necrotic cardiomyocytes released a heat-labile proinflammatory signal activating MAPKs and NF-κB in cardiac fibroblasts, with secondary production of cytokines. This response was abolished in Myd88(-/-) fibroblasts but was unaffected in nlrp3-deficient fibroblasts. Despite MyD88 dependency, the response was TLR independent, as explored in TLR reporter cells, pointing to a contribution of the IL-1 pathway. Indeed, necrotic cardiomyocytes released IL-1α, but not IL-1β, and the immune activation of cardiac fibroblasts was abrogated by an IL-1R antagonist and an IL-1α-blocking Ab. Moreover, immune responses triggered by necrotic Il1a(-/-) cardiomyocytes were markedly reduced. In vivo, mice exposed to MI released IL-1α in the plasma, and postischemic inflammation was attenuated in Il1a(-/-) mice. Thus, our findings identify IL-1α as a crucial early danger signal triggering post-MI inflammation

    AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity.

    Get PDF
    Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1β. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity
    corecore